ucrL- 87494

PREPRINT

The S-1 Multiprocessor System

J. M. Broughton
P. M. Farmwald
T. M. McWilliams

This Paper Was Prepared For Submittal To
SPIE Technical Symposium East '82
Arlington, Virginia
May 3-7, 1982

April 2, 1982

This is a preprint 6!’ a paper intended for publication in a journal or ngs. Since
changes may be made before publication, this preprint is made available with the wa-
derstanding that it will not be cited or reproduced without the permission of the author,

DISCLAIMER

This document was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial products,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement
recommendation, or favoring of the United States Government or the
University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

The S-1 Multiprocessor System
J. M. Broughton, P. M. Farmwald, T. M. McWilliams

Lawrence Livermore National Laboratory
P.0. Box 5503, Livermore, California 94550

Abstract

This paper describes the S-1 multiprocessor system. It is composed of 16 supercomputer
class uniprocessors with local caches, an extremely large, medium latency shared memory,
and a low latency synchronization bus for passing short messages. The system is applicable
to a wide variety of applications, including large-scale physical simulation, real-time
command and control, and program development in a time-sharing environment. The hardware
organization, its implications, and software supporting the efficient utilization of the
multiprocessor are discussed.

Introduction

The S-1 Project [l] is engaged in the development of advanced digital processing tech-
nology for potential application in the military and scientific communities. Current work
being sponsored by the U.S. Navy and the Department of Energy involves the design and
development of extremely high performance, general purpose computers (S5-1) and multiprocessor
interconnection technologies.

The reasons for development of multiprocessors have been widely discussed; chief among
them are reliability, economy and scale. We place heavy — though hot exclusive — emphasis
on the issue of scale.

Today, there are a number of important problems for which manual solution is infeasible,
yet cannot be handled by existing computers because they have insufficient computing power
[2]. As an example, the ability to provide an accurate two week weather forecast would
have extraordinary economic leverage. It would allow farmers to select optimal times for
planting and harvesting, and provide substantial warning of natural disasters to minimize
loss of life and property. The latest computational methods for weather prediction are
beiieved to be adequate for the task; unfortunately, they overwhelm the computing and
storage capacity that is available today. Develoment of new oil and mineral resources is
of vital national importance. Much of the exploration being conducted involves seismic
data processing, and employs vast computer resources. Effective utilization of the new
semiconductor technology, specifically very large scale integration (VLSI), is limited by
our ability to design and debug circuits involving hundreds of thousands of transistors.
Computer-aided design techniques, such as the Project's SCALD system [3], have been
demonstrated to greatly reduce development time of new digital systems; however, their use
is effectively limited to designs of moderate size because of capacity limitations.
Similar limitations are seen in a variety of military applications.

Given a particular logic technology, there is a limit to performance that can be obtained
regardless of the complexity or cleverness of the processor design. Today's fastest
processors using commercially available components have a peak performance in the 10-40 MIPS
(million instruction per second) regime for scalar operations and 100-400 MFLOPS (million
floating point operations per second) for vectar operations. A multiprocessor, however, can
exceed the inherent limitations on a single processor by performing computations in parallel.

Multiprocessor systems which have been demonstrated to date fall into toughly two
categories. The first includes systems that have a large number of small scale processors
(minicomputers or microcomputers). Examples include most of the early research multi-
processors such as CM*. Aggregate system performance is limited because of the limited
performance of the processing elements, and the limited number of processing elements
connected together. The second category encompasses systems that have a small number of
medium scale processors (small mainframes). This approach has been taken in several
commercial offerings that provide cost effective performance enhancement for batch or time-
sharing applications through dual-processor configurations. Aggregate system performance

1s not an 1issue in these systems as they are used to run more jobs rather than a single
job faster.

The S-1 Project 1is taking the unique approach of assembling a2 multiprocessor consisting
of up to sixteen uniprocessors, each of which have a performance comparable to that of the
fastest supercomputers. This paper will address four topics: design of the uniprocessors,
the multiprocessor architecture, operating system support, and the tools for partitioning

N
o
-
N

single problems for a multiprocessor.

Uniprocessors

For use in the multiprocessor, we are developing a family of processors having similar
architectures, but differing implementation technology. Each successive family member is
intended to make maximally effective use of the then available logic families. Such a
succession of processors is required in order to maintain the multiprocessor's edge.
Advances in semiconductors are occurring at such a rapid rate that a multiprocessor tied
to one particular technology would soon be made obsolete by single processors having an
order of magnitude greater speed.

The first generation of the S-1 family of processors is the Mark I, which has been
operational since 1978. Implemented in ECL-10K medium scale integrated circuits (MSI), it
is roughly equivalent in processing power to one-third of a CDC 7600. The second generation,
the Mark IIA, is currently undergoing initial checkout. Through use of extensive hardware
support for vector and floating point computations, and faster logic (ECL-100K MSI), it is
expected to achieve performance comparable to existing supercomputers such as the Cray-1.
Future generations are planned that will follow the leading edge of implementation
technologies to obtain ever increasing performance and ever decreasing cost, power and
space requirements. The S-1 Mark V, targeted for development in 1985, is intended to be a
"supercomputer on a wafer" with performance 2-3 times that of the Mark IIA.

Unlike traditional supercomputers which sacrifice functionality for performance, the
architecture of the S-1 uniprocessors has been designed to be easy and efficient to use for
a wide variety of applications. In this, it closely resembles the highly popular mini-
mainframes which stress flexibility over performance.

The architecture was designed with a number of goals in mind. First, it must be suitable
for high performance implementation; second, it must be simple for a high level language
(e.g. Ada) compiler to make effective use of instruction set; and third, it must provide a
comprehensive set of data types and operations so that the programmer can select the
arithmetic precision appropriate to a problem.

In addition, to the usual general purpose features, the S-1 architecture has incorporated
a number of special purpose operations to provide especially high performance for its
anticipated applications. Many scientific codes make heavy use of elementary functions such .
as sine, cosine, exponentials, and logarithms. The architecture provides these functions as
single instructions, and the Mark IIA has special hardware to permit the instructions to
execute at about the same speed as a simple multiply. An extensive vector instruction set
is provided to enhance performance on problems that manipulate large arrays of data. Special
vector instructions are provided for signal processing applications. Examples include FFT's
and filtering operations. Matrix operations are also supported, including matrix multiply
and generalized transpose. Because the S5-1 implementations are uniformly cached-based, all
vector instructions execute with a one element step size to avoid inefficient use of the
cache. In cases where the problem requires non-unity step sizes, the transpose instruction
can be used to extract the relevant elements into a unity step size temporary vector.

The S-1 architecture provides the user with a large, segmented virtual address space
spanning 2 billion 9-bit bytes of data. Memory capacity on this scale is crucial for the
effective solution of large problems such as three-dimensional physical simulations. The
large address space allows all the problem data to reside directly in memory in the obvious
fashion, and eliminates the programming contrivances needed to explicitly manage multiple
types of computer system storage (i.e., manually swapping data to and from a disk file).

A virtual memory mechanism maps the virtual address space to physical memory. In the event
that the user's memory requirements exceed physical capacity, it is possible for the
operating system to simulate the additional memory with a slight performance penalty; this
avoids the problem of a program '"falling off a memory cliff". With todav's rapidly
decreasing costs of memory, however, it is economical to purchase sufficient memory to meet
the requirements of even the largest programs.

Multiprocessor Systems

The S-1 Multiprocessor System is a MIMD (multiple instruction, multiple data) stream
organization. The multiprocessor currently being built at the Lawrence Livermorc National
Laboratory consists of 16 Mark IIA processors, connected together with a crossbar switch
as shown in Figure 1.

A crossbar is the highest possible performance interconnection network, with a direct
logical connection from each processor to each memory bank. Given that high performance
processing elements are being used, the cost of the crossbar switch turns out to only be
a few percent of the system cost, making it the obvious choice for use.

Memo 1-14 Memory
P Vo —— - e - — — S
Controlier | Diagnostic Disgnostic Controller
0 processor processor 15
Crossbar

switch

Disgnostic

processor

-
Uniprocessor 0

A

3

Unipracessor 15y
Data Instruction Data Instruction
cache cache cache cache
M M
F <—1-—1-‘ —] F
P P
| |
™ A —™ A
Dieg- 1-6 Diag- 1-86
P 1/0 - 1/0 i 1/0 - 1/0
mc store 0 [* — store 7 m‘ store 0 [— ™) store 7
A [
y
Real- 1/0 Mass | 110 Real- 110 Mass | 1/0
time <= proc. = storege |proc.| time “*=> proc [« storsge | proc.
[J{e] 0 units 1/0 0 units 7
— e i — e
t 1-6 i 1—6 [
Peripheral Peripherai
equipment equipment 1

Synchronization box

Figure 1.

51 L5

P)

To the programmer, the S-1 Multiprocessor looks like 16 identical processors executing
out of a very large (up to 16 billion bytes) common memory. The processors always get the
latest value associated with a memory location, and instructions operate in a read-modify-
write fashion. All of the complexity of moving results between different processors and
between processors and memories are completely handled by the hardware in an invisible
fashion.

In order to speed up effective memory access times, the processor keeps the most-recently
referenced memory locations in cache memories, which are very high-speed local memories
contained inside of the processors. Each processor has two cache memories, one which keeps
track of the most-recently referenced 64K bytes of data, and one which keeps track of the
most-recently referenced 16K bytes of instructions. When a processor wants to use a location
that is contained in one of the caches, the effective access time is zero, since the read is
overlapped with the execution of the previous instruction. When the processor wants to use
a location that is not contained in one of the caches, the processor goes out to the main
memory to see if the desired location is stored there. If so, it reads the 64 bytes around
the location of interest, and stores them in its cache for future use, removing the 64 bytes
that haven't been referenced for the longest period of time. If the location that is
desired is contained in the cache of another processor, the requesting processor will ask
the processor that has the location in its cache to remove it from its cache, and to transmit
the data to the requesting processor.

The technique by which the hardware automatically keeps track of shared data in a multi-
processor with caches is called cache coherence [4]. Associated with each block of 64 bytes
in main memory are an additional 17-bits that specify the current "ownership" of the block.
There is one bit for each of the 16 processors in the multiprocessor which is set if the
corresponding processor has a copy of the block in its cache, and the 17th bit says that
somebody has a copy of the block for write access. Multiple processors are allowed to have

copies of a block for read access, but only one processor is allowed to have a block for
write access.

The use of shared memory to provide high speed synchronization and low latency data
transmission (less than a microsecond) is difficult. For problems which require very close
cooperation between the processing elements, a special set of hardware implemented queue
instructions are provided. These instructions allow one processor to put computed results
into a queue for another processor, which takes values and does further computation. We
have found that this can substantially speed up processing in some algorithms.

Operating System Support

In order to provide a workable software base for experimentation, the S-1 Project has
undertaken the development of a new operating system, called Amber, that is intended to
provide a flexible interface to the multiprocessing capabilities of the system.

The basic design goal of Amber is to support a widely varying community of users —
including real-time, computation intensive, and time-sharing — on one system. We see this
as particularly important since it allows for extensive sharing of effort, both in the
development of system software and applications software. Often several operating systems
are developed for new computers, one for each major class of application. When this occurs,
there is little motivation to share development effort between the different operating
systems. Facilities with common functions are implemented multiple times with different
interfaces for each operating system. This not only increases the total development burden,
but also limits the rate at which the system matures, since a smaller user group is avail-
able to test out the system. On the other hand, when there is a single multi-function
operating system; tools such as compilers, debuggers and file maintenance utilities can be
readily shared between different applications. More important is the fact that libraries
developed by user groups can be shared as well. There is, however, a danger in the
development of a multi-function system; the system may not fulfill any of the requirements
well. To avoid this problem, Amber has a modular layering of functions. The lowest levels
of the system provide only atomic functions that can be implemented efficiently; higher
levels of the system incorporate the more complex functions which are specific to particular

applications. Commonality is therefore retained, but an application need only invoke the
functions necessary to it.

The central example of this kind of layering of function exists in the scheduler. The
low level scheduler provides an efficient mechanism for short-term scheduling of tasks on a
single processor. The basic algorithm is a simple priority scheduling algorithm with
round-robin queues. Within a single priority level, each task may run until it must wait
for some external event, or an assigned run quantum expires, at which time it is moved to
the end of the queue. Tasks may be assigned to different priority levels depending on their
relative importance or real-time constraints. For example, in a timesharing system normal
user tasks might be given priority over batch jobs, and relinquish priority to tasks which

e
W

- F:.‘

i

J

must respond to external interrupts in a certain length of time. The high level scheduler
implements higher level, policy oriented scheduling functions, by manipulating the param-
eters of the low level scheduler, such as task priority or quantum size. The simplest
example of such a scheduling policy is for '"real-time" jobs. Here the policy is simple,
select the priority that the job is to have, and assign it to a processor. More complex
policies occur in batch or time-sharing systems, where it may be desirable to load-share
across all the processors in the system or to guarantee a particular job a certain fraction
of system resources. In contrast to the low level scheduler, which makes assignments on
millisecond timescales, the policy decisions are made on second or minute timescales and
can therefore be relatively expensive without unduly affecting system response.

The low level scheduler enforces a dedicated processor assignment for each task given
to it, rather than scheduling each task to the next available processor. This means that
processors may lie idle in the system while there are tasks ready to run. While this may
seem unfortunate at first glance, there is in fact strong motivation to restrict task to
single processors in the short run. First, the I/0 architecture of the S-1 attaches
peripherals through dual-port memories to a particular processor. A task whose purpose is
to control a peripheral can only run on the processor to which the peripheral is attached;
the task's processor assignment must reflect this fact. Second, the internal processor
caches are very large, and as a task runs it builds up a substantial investment in data
that has been locally cached. If its execution were to be moved to a different processor,
the data would have to be swapped back to main memory and then swapped into the cache of
the new processor. Consequently, if tasks are moved from one processor to another on a
short time scale, a noticeable performance degradation results. By performing processor
reassignment on a relatively long time scale, the effect is trivialized. Third, to support
parallelism between tasks working on the same problem, it is necessary to insure concurrency
of execution. By assigning each such task to its own processor, we can do so without use

of a complex algorithm which would interfere with the simple requirements of other applica-
tions.

One of the important features of the S-1 multiprocessor is the large shared memory which
permits high bandwidth communications between tasks. Access to the shared memory is provided
in two ways: sharing of entire address spaces, and sharing of specific data objects.

The address space of a task encompases all data to which it has access; this includes
program instructions, common blocks, and local variables. In many operating systems, each
task is assigned a unique address space (usually called a core image). Each task sees its
own private copy of all programs and data. Modifications made are not apparent to other
tasks. In Amber it is possible for two, or more, tasks to share the same address space,
i.e., identically the same physical storage. As a result, a modification to data made by
one task is immediately visible to another, even if the tasks reside on different processors.
Such shared data may be used as semaphores or locks to synchronize the execution of the tasks
or as shared data bases to be concurrently processed by the tasks.

While there are uses for sharing entire address spaces — for instance, the semantics
of Ada require tasks to execute in the same address space, there is added protection in only
sharing that portion of address which is actually common. For this, Amber implements
-segmentation. A segment is little more than an ordinary file, except that a task can instruct
that the file be mapped into its address space so that it may be directly modified. When
two tasks both map the same segment, they share a single physical copy, while other portions
of the address space stay private. Thus, a task is protected against inadvertent modifica-
tions to its private state. The segmentation mechanism can provide further intertask
protection as well. The modes of access (read, write) that a task is permitted to a segment
is the same as the normal file protection. It is then possible, for example, to set up —
and enforce — a reader/writer relationship between two tasks by granting one read/write
access on the segment, and the other only read access.

The inherent redundancy of the multiprocessors is often used to obtain increased relia-
bility and availability. Amber uses a facility called dynamic reconfiguration to exploit
the redundant components of the S-1 multiprocessor. At any time, Amber is capable of pro-
viding service with only a partially operating configuration, and it is possible to
dynamically change the configuration without halting the system. If a memory box is to be
removed, data in that box is moved either to another box or to disk and the virtual memory
mapping updated to reflect is new location. If a processor is to be removed, tasks on that
processor arc halted and redistributed to other processors for execution. When a memory

or a processor is added, it is added to the pool of system resources and is assigned as
needed.

A Multiprocessor Software Tool

The construction and maintenance of large application programs for a multiprocessor
system presents many problems. The details of the multiprocessor system may greatly

L j%‘fs

influence the structure of the software that yields the best performance. For instance,
the algorithm that is fastest on a uniprocessor may not exploit the capabilities of a
multiprocessor as well as one tailored for parallelism. In addition, the number of proces-
sors available on a time-shared (or gracefully degrading) multiprocessor may vary with
time, with different algorithms being appropriate for different load factors and numbers

of processors.

Thus, it is desirable to maintain a single source which works well on many configurations.
However, including too many details of how to best perform a task may lead to unreadable,
unmodifiable, and untransportable programs. The approach taken in the Paralyzer, a tool
being developed by the S-1 Project, is to split programs into two conceptual pieces. One
part describes the "how" of the computation, which includes the basic data and control flow
of the algorithm. The second part is the "where'" of the computation. This basically
specifies what processors are to run the computations, as well as modifying the control and
data flow of the first section in ways appropriate to the hardware available. The intent
is that the first section is relatively machine and configuration independent, whereas the
second is completely driven by the computation resources.

The current version of the Paralyzer uses Pascal as the source language, and is implemented
as a source-to-source translator. Special Pascal comments are used to describe some of the
"where". The special comments and the "where' description file are implemented in Maclisp
(a variant of Lisp) -— thus a complete programming language is available for program manipu-
lation. A library of routines have been written in Maclisp to implement the most common
kinds of transformations.

A simple example of a transformation performed by the Paralyzer involves partitioning
the processing of a matrix among several processors. The directives in the special comments
instruct that the matrix be divided into several equal sections, along columnar boundaries,
and that each section be given to a separate processor for parallel execution. Such a
transformation is feasible when the computation of a single matrix element depends only on
other elements in the same column; not on elements in the same row. This restriction insures
that a single processor has all the data it needs to perform its part of the computation.
When other dependencies exist in data, other more complicated transformations are called for.

In addition to generating code for uniprocessor and multiprocessor systems, the Paraly:zer
has been used to generate code for simulation purposes. For instance, instead of generating
variable references, the Paralyzer can generate calls to routines that allow the cache and
memory performance of the algorithm to be determined.

Summary

The S-1 Multiprocessor System is a new step in the development of high-performance computer
systems. It combines many cost effective supercomputers with the interconnection hardware
and software to effectively utilize those processors on a single problem. The goal is to
provide the capability to solve real problems of interest to real users.

Acknowledgments

Work performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under contract number W-7405-ENG-48, with support from the
Naval Electronics Systems Command and the Office of Naval Research.

References

1. S-1 Project Staff, "Advanced Digital Processor Tcchnology Base Development for Navy
Applications: The S-1 Project," Lawrence Livermore Laboratory, Report UCID 18038 (1978).

2. Levine, R. D., "Supercomputers,”" Scientific American, Vol. 246, No. 1, January 1982.

3. McWilliams, T. M., Widdoes, L. C., "The S5CALD Physical Design Subsystem,'" Proceedings
of the 15th Annual Design Automation Conference, Las Vegas, 1978 (IEEE, ACM, New York, 1978)
p. 271.

4. Censier, L. M. and Feaurier, P. A., "A New Solution to Coherence Problems in Multicache
Systems,'" IEEE Transactions on Computers, C27 (12), 1112 (1978).

